REDOX-PHOTOSENSITIZED CHAIN MONOMERIZATION OF cis, syn-DIMER OF DIMETHYLTHYMINE; UNUSUAL EFFECT OF MOLECULAR OXYGEN¹

Tetsuro Majima, Chyongjin Pac,* Junichi Kubo, and Hiroshi Sakurai The Institute of Scientific and Industrial Research, Osaka University Suita, Osaka 565, Japan

Summary: cis,syn-Dimer of dimethylthymine was monomerized by means of a chain reaction upon the selective photoexcitation of phenanthrene in aerated acetonitrile in the presence of p-dicyanobenzene. It was found that the dimer forms a CT -complex with O_2 .

Photosensitized monomerization of thymine dimers is of biological interest with regard to enzymatic photoreactivation (PR) of damaged DNA and has been investigated for understanding of unknown molecular mechanisms of PR. $^{2-4}$ Even in typical photosensitized reactions, however, quantum yields for the monomerization are usually low, $2,3$ 0.5 at best.⁴ Since PR is thought to be very efficient, ⁵ model reactions should meet, at least, the requirement that efficiencies be high. We have found that cis, syn-dimethylthymine cyclobutane dimer (DMTODMT) is efficiently monomerized by the redox-photosensitization using aromatic hydrocarbon (S)-p-dicyanobenzene(DCNB)-acetonitrile systems^{6,7} and that oxygen molecules remarkably enhance efficiencies of the photosensitized monomerization.

Irradiation of an air-saturated dry acetonitrile solution containing phenanthrene, DCNB, and DMT \lozenge DMT at 313 nm gave N,N'-dimethylthymine (DMT) in nearly

quantitative yield 097%) even at **100%** conversion, whereas both phenanthrene and DCNB were completely recovered. Table 1 lists quantum yields for the formation of DMT ($\emptyset_{\sf DMT}^{\sf D}$) and oxidation potentials ($\texttt{E}_{1/2}^{\sf OX}$) of S and DMTODMT. As is shown in Table 2, quantum yields remarkably depend on concentration of dissolved $0₂$. Surprisingly, the limiting quantum yield for air-saturated solution is 205! This clearly demonstrates the occurrence of a chain reaction.

Table 1. Quantum Yields for Redox-photosensitized Monomerization of **DMTODMT** and Oxidation Potentials of S and DMTODMT

	Triphenylene	Naphthalene	Phenanthrene	Chrysene	Pyrene	DMTODMT	
$\mathfrak o_{\rm DMT}^{}$	10.68	8.83	8.36	0.11	0.00	\bullet	
$E_{1/2}^{0x}$ /v ^{b)}	1.29	1.22	1.17	1.05	0.78	1.45	

a) Values at 313 nm for air-saturated dry acetonitrile solutions containing S (0.01 M) , DCNB (0.1 M) , and DMT \lozenge DMT (0.01 M) . b) Determined vs. Ag/Ag⁺ in acetonitrile by cyclic voltammetry.

Table 2. Effect of Molecular Oxygen on Redox-photosensitized Monomerization of **DMTODMT a)**

		Gas-saturated ^{C)}					
	Degassed ^{b)}	N_{Ω}	Air	o.			
α, ϕ_{DMT}	0.14	3.1	30.1	6.6			
\sim е) \varPhi_{DMT}	1.20	$\,$	205	38			

a) In all the runs, 0.01 M of phenanthrene and 0.1 M of DCNB were used. b) By five freeze-pump-thaw cycles under high vacuum $(\zeta 10^{-5}$ mmHg). c) Each gas-saturated solution was obtained by bubbling with the corresponding gas for 20 minutes. d) Values at 0.04 **M** of **DMTODMT. e)** Limiting quantum yields obtained from the intercepts of linear plots of $\varphi^{-1}_{\text{DMT}}$ vs. [DMToDMT]⁻¹.

The end absorption of DMTODMT was found to be correspondingly shifted, when a thoroughly degassed solution was in turn saturated with air, argon, and air (Figure). This indicates the formation of a CT-complex between $0₂$ and DMTODMT. Since the spectrum of O_2 -saturated solution is identical to that of air-satu-

Figure. W-spectra of DMTODMT (0.01 M) (a) in a thoroughly degassed acetonitrile solution (---) and after bubbling **for 20 min in turn (b) with air** (____), (c) with argon (.......), (d) with air (——), and then (e) with pure 0₂ (----)

rated solution, air saturation can provide enough amounts of O_2 for the **maximum formation of the CT-complex. Thus, the spectral changes are in line with the results in Table 2.** The remarkable enhancement of ϕ_{DMT} **by air saturation is clearly due to the formation of the CT-complex. On the other hand, saturation with** pure $0₂$ results only in an increase **of uncomplexed 02, thus giving rise** to a lower \varnothing_{DMT} than air saturation, since the uncomplexed $0₂$ perhaps **deactivates reaction intermediates such as excited species and ion radicals. It is of interest to note that the CT-complex still exists in part even after bubbling with argon.**

$$
s \xrightarrow{h\nu} 1_{S^*}
$$
\n
$$
1_{S^*} + DCNB
$$
\n
$$
MTODMT + O_2 \xrightarrow{fast} 2 DMTODMT \cdot O_2
$$
\n
$$
s^+ + DMTODMT \cdot O_2 \xrightarrow{fast} s^+ + 2 DMT + O_2
$$
\n
$$
s^+ + DMTODMT \xrightarrow{slow} s^+ + 2 DMT
$$
\n
$$
s^+ + X \xrightarrow{slow} 3 and/or others
$$
\n
$$
(X = DCNB^-, O_2, H_2O, and inputities)
$$

The mechanism involving the catalytic monomerization by the cation radical of S (S^t) without the intervention of DMTODMT⁺ is suggested from the following **reasons: (1) DMTODMT did neither quench the fluorescence of S nor form any CT-**

complexes with S and DCNB, (2) the photosensitized monomerization did not occur in ethyl acetate, (3) ϕ_{DMT} depends on $E_{1/2}^{OX}$ of S, (4) $E_{1/2}^{OX}$ of S is considerably lower than that of DMTODMT, and (5) a similar mechanism has been demonstrated for the redox-photosensitized cycloreversion of indene cyclobutane dimers.⁷ According to this mechanism, the cation radical of phenanthrene can monomerize more than one hundred molecules of the dimer complexed with $0₂$. However, it can not be reasonably interpreted at the present time why the complexation with $O₂$ makes the dimer much more susceptible of the catalytic monomerization by the cation radical of S.

At any rate, the redox-photosensitized monomerization of DMTODMT via the CT. complex with $O₂$ is extremely efficient, thus providing a possible model reaction for PR. Finally, it should be noted that the cis, anti-dimer was not monomerized at all by the redox-photosensitization. We are now intending to apply this reaction to the trans,syn-dimer.

References

- 1) Part 4 of Redox-photosensitized Reactions. Part 3; T. Majima, C. Pac, and H. Sakurai, Chem. Lett., 1133 (1979).
- 2) G. J. Fisher and H. E. John, "Photochemistry and Photobiology of Nucleic Acids," S. Y. Wang, Ed., Academic Press, New York, N.Y., 1976, Vol. 1, p. 226.
- 3) C. Hélène and M. Charlier, Photochem. & Photobiol., 25, 429 (1977).
- 4) A. A. Lamola, Mol. Photochem., 107 (1972).
- 5) H. Harm, "Photochemistry and Photobiology of Nucleic Acids," S. Y. Wang, Ed., Academic Press, New York, N.Y., 1976, Vol. 2, p. 219.
- 6) C. Pac, A. Nakasone, and H. Sakurai, J. Am. Chem. Soc., 99, 5806 (1977).
- 7) T. Majima, C. Pac, A. Nakasone, and H. Sakurai, J. Chem. Soc., Chem. Commun., 490 (1978).

(Eeceived in Japan 26 October 1979)

380